library("betareg")
data("FoodExpenditure", package = "betareg")
## Ferrari and Cribari-Neto (2004)
## Section 4
fe_lin <- lm(I(food/income) ~ income + persons, data = FoodExpenditure)
library("lmtest")
bptest(fe_lin)
studentized Breusch-Pagan test
data: fe_lin
BP = 5.9348, df = 2, p-value = 0.05144
## Table 2
fe_beta <- betareg(I(food/income) ~ income + persons, data = FoodExpenditure)
summary(fe_beta)
Call:
betareg(formula = I(food/income) ~ income + persons, data = FoodExpenditure)
Quantile residuals:
Min 1Q Median 3Q Max
-2.5328 -0.4599 0.1698 0.6416 1.7733
Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.622548 0.223854 -2.781 0.005418 **
income -0.012299 0.003036 -4.052 5.09e-05 ***
persons 0.118462 0.035341 3.352 0.000802 ***
Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z|)
(phi) 35.61 8.08 4.407 1.05e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Type of estimator: ML (maximum likelihood)
Log-likelihood: 45.33 on 4 Df
Pseudo R-squared: 0.3878
Number of iterations: 28 (BFGS) + 4 (Fisher scoring)