plot.qqrplot.Rd
Generic plotting functions for Q-Q residual plots for objects of class "qqrplot"
returned by link{qqrplot}
.
# S3 method for qqrplot
plot(
x,
single_graph = FALSE,
detrend = NULL,
simint = NULL,
confint = NULL,
confint_type = c("pointwise", "simultaneous", "tail-sensitive"),
confint_level = 0.95,
ref = NULL,
ref_identity = TRUE,
ref_probs = c(0.25, 0.75),
xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
axes = TRUE,
box = TRUE,
col = "black",
pch = 19,
simint_col = "black",
simint_alpha = 0.2,
confint_col = "black",
confint_lty = 2,
confint_lwd = 1.25,
confint_alpha = NULL,
ref_col = "black",
ref_lty = 2,
ref_lwd = 1.25,
...
)
# S3 method for qqrplot
points(
x,
detrend = NULL,
simint = FALSE,
col = "black",
pch = 19,
simint_col = "black",
simint_alpha = 0.2,
...
)
# S3 method for qqrplot
autoplot(
object,
single_graph = FALSE,
detrend = NULL,
simint = NULL,
confint = NULL,
confint_type = c("pointwise", "simultaneous", "tail-sensitive"),
confint_level = 0.95,
ref = NULL,
ref_identity = TRUE,
ref_probs = c(0.25, 0.75),
xlim = c(NA, NA),
ylim = c(NA, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
legend = FALSE,
theme = NULL,
alpha = NA,
colour = "black",
fill = NA,
shape = 19,
size = 2,
stroke = 0.5,
simint_fill = "black",
simint_alpha = 0.2,
confint_colour = NULL,
confint_fill = NULL,
confint_size = NULL,
confint_linetype = NULL,
confint_alpha = NULL,
ref_colour = "black",
ref_size = 0.5,
ref_linetype = 2,
...
)
an object of class qqrplot
as returned by qqrplot
.
logical, defaults to FALSE
. In case of multiple Q-Q residual plots:
should all be drawn in a single graph?
logical. Should the qqrplot be detrended, i.e, plotted as a
`wormplot()`? If NULL
(default) this is extracted from x
/object
.
logical or quantile specification. Should the simint of quantiles of the randomized quantile residuals be visualized?
logical or character string describing the style for plotting `c("polygon", "line")`.
character. Should "pointwise"
or "simultaneous"
confidence intervals
of the (randomized) quantile residuals be visualized. Simultaneous confidence intervals are based
on the Kolmogorov-Smirnov test.
numeric. The confidence level required, defaults to 0.95
.
logical. Should a reference line be plotted?
Should the identity line be plotted as reference and otherwise which probabilities should be used for defining the reference line?
additional graphical
parameters for base plots, whereby x
is a object of class qqrplot
.
graphical plotting parameters passed to
plot
or points
,
respectively.
graphical parameters for the main part of the base plot.
Further graphical parameters for the `confint` and `simint` line/polygon in the base plot.
logical. Should a legend be added in the ggplot2
style
graphic?
name of the `ggplot2` theme to be used. If theme = NULL
, the theme_bw
is employed.
graphical parameters passed to ggplot2
style plots.
Further graphical parameters for the `confint` and `simint` line/polygon using autoplot
.
Q-Q residuals plots draw quantile residuals (by default on the standard normal
scale) against theoretical quantiles from the same distribution.
Alternatively, quantile residuals can also be compared on the uniform scale
(scale = "uniform"
) using no transformation.
Q-Q residuals plots can be rendered as ggplot2
or base R graphics by
using the generics autoplot
or
plot
. points
(points.qqrplot
) can be used to add Q-Q residuals to an
existing base R graphics panel.
Dunn KP, Smyth GK (1996). “Randomized Quantile Residuals.” Journal of Computational and Graphical Statistics, 5(3), 236--244. doi:10.2307/1390802
## speed and stopping distances of cars
m1_lm <- lm(dist ~ speed, data = cars)
## compute and plot qqrplot
qqrplot(m1_lm)
## customize colors
qqrplot(m1_lm, plot = "base", ref_col = "blue", lty = 2, pch = 20)
## add separate model
if (require("crch", quietly = TRUE)) {
m1_crch <- crch(dist ~ speed | speed, data = cars)
points(qqrplot(m1_crch, plot = FALSE), col = 2, lty = 2, simint = 2)
}
#> [1] "expected"
#-------------------------------------------------------------------------------
if (require("crch")) {
## precipitation observations and forecasts for Innsbruck
data("RainIbk", package = "crch")
RainIbk <- sqrt(RainIbk)
RainIbk$ensmean <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, mean)
RainIbk$enssd <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, sd)
RainIbk <- subset(RainIbk, enssd > 0)
## linear model w/ constant variance estimation
m2_lm <- lm(rain ~ ensmean, data = RainIbk)
## logistic censored model
m2_crch <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0, dist = "logistic")
## compute qqrplots
qq2_lm <- qqrplot(m2_lm, plot = FALSE)
qq2_crch <- qqrplot(m2_crch, plot = FALSE)
## plot in single graph
plot(c(qq2_lm, qq2_crch), col = c(1, 2), simint_col = c(1, 2), single_graph = TRUE)
}
#-------------------------------------------------------------------------------
## determinants for male satellites to nesting horseshoe crabs
data("CrabSatellites", package = "countreg")
## linear poisson model
m3_pois <- glm(satellites ~ width + color, data = CrabSatellites, family = poisson)
## compute and plot qqrplot as "ggplot2" graphic
qqrplot(m3_pois, plot = "ggplot2")